Near infrared laser-tissue welding using nanoshells as an exogenous absorber.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVE Gold nanoshells are a new class of nanoparticles that can be designed to strongly absorb light in the near infrared (NIR). These particles provide much larger absorption cross-sections and efficiency than can be achieved with currently used chemical chromophores without photobleaching. In these studies, we have investigated the use of gold nanoshells as exogenous NIR absorbers to facilitate NIR laser-tissue welding. STUDY DESIGN/MATERIALS AND METHODS Gold nanoshells with peak extinction matching the NIR wavelength of the laser being used were manufactured and suspended in an albumin solder. Optimization work was performed on ex vivo muscle samples and then translated into testing in an in vivo rat skin wound-healing model. Mechanical testing of the muscle samples was immediately performed and compared to intact tissue mechanical properties. In the in vivo study, full thickness incisions in the dorsal skin of rats were welded, and samples of skin were excised at 0, 5, 10, 21, and 32 days for analysis of strength and wound healing response. RESULTS Mechanical testing of nanoshell-solder welds in muscle revealed successful fusion of tissues with tensile strengths of the weld site equal to the uncut tissue. No welding was accomplished with this light source when using solder formulations without nanoshells. Mechanical testing of the skin wounds showed sufficient strength for closure and strength increased over time. Histological examination showed good wound-healing response in the soldered skin. CONCLUSIONS The use of nanoshells as an exogenous absorber allows the usage of light sources that are minimally absorbed by tissue components, thereby, minimizing damage to surrounding tissue and allowing welding of thicker tissues.
منابع مشابه
In-vitro Investigations of Skin Closure using Diode Laser and Protein Solder Containing Gold Nanoshells
Introduction: Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nanoshells, a new class of nanoparticles consisting of a dielectric cor...
متن کاملساخت و ویژگییابی نانوپوسته های طلا برای کاربردهای پزشکی
Gold nanoshells are a new type of nanoparticles including dielectric cores with a continuous thin layer of gold. By varying the core diameter, shell thickness, and the ratio of these parameters, the optical properties of gold nanoshells can be tuned to have maximum absorption in the visible and near infrared spectrum range. The purpose of this research was to synthesize gold coated SiO2 nanos...
متن کاملBarium titanate core – gold shell nanoparticles for hyperthermia treatments
The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperth...
متن کاملNear-infrared narrow-band imaging of gold/silica nanoshells in tumors.
Gold nanoshells (GNS) are a new class of nanoparticles that can be optically tuned to scatter or absorb light from the near-ultraviolet to near-infrared (NIR) region by varying the core (dielectric silica)/shell (gold) ratio. In addition to spectral tunability, GNS are inert and bioconjugatable, making them potential labels for in vivo imaging and therapy of tumors. We report the use of GNS as ...
متن کاملEffective method for monitoring the welding process is essential to improve welding quality [4-6]. For instance, seam tracking system LPF from Precitec, welding monitor from Prometec, and RoboFind from Servo Robot have been
Process monitoring is important for the laser welding system, especially for the weld seam deviation monitoring. A 10kW high power fiber laser butt joint welding of type 304 stainless steel was performed. By combing two different band pass filters, high speed photography was employed to capture the near-infrared images of molten pools. Image difference algorithm was used to obtain the weld seam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2005